Air/Moisture-Ingress Furnace Development

John Stempien

AGR TRISO Fuels Program Review Idaho Falls, ID July 18-19, 2017

aov.

Outline

- Purpose for air/moisture-ingress testing
- Data to be collected
- Test conditions
- Samples to be tested
- Development and current status

Purpose of Safety Testing in Air and Steam

- Safety testing of AGR fuel has only been under helium (FACS/CCCTF)
- Accident scenarios in HTGRs include depressurized conduction cooldown events:
 - Main coolant line break with air-ingress
 - Steam generator tube leak with moisture-ingress
- Fuel oxidation will occur when exposed to air or steam at high temperatures:
 - Compact matrix and particle OPyC layer oxidation
 - SiC generally resistant to but will slowly oxidize as well
- Small amounts of fission products accumulate in compact matrix during irradiation
- Oxidation of matrix and OPyC will mobilize fission products outside of the OPyC
- Exposed kernels (from as-fabricated defects or failures) vulnerable to hydrolysis
- This activity falls under elements 3 and 5 of the Technical Program Plan (TPP-3636)
 - #3 Safety testing
 - (#4 Fuel performance modeling)
 - #5 Fission product transport and source term

Air/Moisture Ingress Furnace Goals

- Test irradiated TRISO fuels in oxidizing environments representative of air and moisture ingress accidents in HTGRs
- Measure fission product releases as a function of time
- Relate fission product releases and release rates to fuel irradiation history, test conditions, and extent of fuel oxidation
- Use collected data for:
 - Fuel qualification and licensing
 - Input to and comparisons with predictive models and simulations
 - Reactor accident source term analysis

Air/Moisture Ingress System Bounding Conditions

Total test pressure (kPa)	~85 (ambient)								
Air Partial Pressures (kPa)	0.1 to 85								
Moisture Partial Pressures (kPa)	0.1 to 85								
Temperature Range (°C)	T _{min} ≤ 800, T _{max} ≥ 1650								
Flow velocity at the sample (m/s)	0.1 to 0.2								
Test durations (hr.)	100 +								

- 1. Preliminary Safety Information Document for the Standard MHTGR, Vol. 1, HTGR-86-024 (1986).
- Oh, C.H., et. al., "Final Report on Experimental Validation of Stratified flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents," INL/EXT-10-20759, Idaho National Laboratory (2011).
- 3. Liu, R., et. al., "High temperature oxidation behavior of SiC coating in TRISO coated particles," Journal of Nuclear Materials, 453, 107-114 (2014).
- 4. Huang, W., et. al, "The relationship between microstructure and oxidation of selected IG- and NBG-grade nuclear graphites," Journal of Nuclear Materials, **454**, 149-158 (2014).
- 5. "Fuel performance and fission product behaviour in gas cooled reactors," IAEA-TECDOC-978, International Atomic Energy Agency (1997).
- 6. Petti, D.A., et. al., "Modular Pebble-Bed Reactor Project Laboratory-Directed Research and Development Program FY2002 Annual Report," INEEL/EXT-02-01545, Idaho National Engineering and Environmental Laboratory (2002).
- 7. Montgomery, F.C., "Evaluation of Need for Integral Fuel Oxidation Tests," DOE-HTGR-86-002, GA Technologies, Inc. (1987).
- 8. Yanhua, Z., Lei, S., and Yan, W., "Water-ingress analysis for the 200 MWe pebble-bed modular high temperature gas-cooled reactor," Nuclear Engineering and Design, **240**, 3095-3107 (2010).
- 9. Richards, M., "REACT_COMPACT: A Computer code for Modeling Graphite Corrosion and Fuel Hydrolysis," Proceedings of the HTR 2016, Las Vegas, NV, November 7-10 (2016).
- 10. Iniotakis, N. and C.B. von der Decken, "Radiological consequences of a depressurized accident combined with water ingress in an HTR Module-200," Nuclear Engineering and Design, **109**, 299-305 (1988).
- 11. Lohnert, G.H., "The consequences of water ingress into the primary circuit of an HTR-Module—From design basis accident to hypothetical postulates," Nuclear Engineering and Design, **134**, 159-176 (1992).
- 12. Wolters, J., Bongartz, R., Jahn, W., and Morroman, R., "The Significance of Water Ingress Accidents in Small HTRs," Nuclear Engineering and Design, **109**, 289-294 (1988).

Data Collection

- Fission product releases as a function of test time
 - Fission product gases:
 - Kr-85 (indicates failure of all three TRISO layers)
 - Xe-133 (could be measured from tests following re-irradiation)
 - Never before done in air/moisture: condensable fission products
 - Ag-110m
 - Cs-134/137 (indicates SiC layer failure)
 - Eu-154/155
 - I-131 (measured from re-irradiated samples)
 - Sr-90
- Extent of sample oxidation as a function of time

Potential Samples

• Irradiated fuel compacts, fuel bodies, pebbles, graphite with fission products

Experiment Layout Thermal gradient denotes trace tube heating zones Air/He bypass during heat up heaters Test Gas and gamma detectors Mass flow Supply Mixer Bottled air controller Furnace Bottled helium for Mass flow mixing with air and **bd** Test gas pre-heater controller for inert heat up **T**-junction Bottled helium Mass flow Filter package (heated at 150 °C): for mixing with controller Glass wool pre-filter steam **HEPA** filter Steam Generator Zeolite filter (optional) Gamma detector Deaerated Mass flow meter Water Supply Hot Cell Wal Steam bypass during heat up Mass-Spectrometer/CO analyzer Red shading denotes Instrument Dual stream sampler trace heaters Heated capillaries Exhaust Mass flow meter H₂O Trap **Fission** gas (e.g. drierite) Condenser (~1°C) monitoring system for Kr-85 and Xe-133: Charcoal traps -He sweep gas supply Gamma detectors

FCF Operating Corridor

Exhaust to FCF stack

FCF Air Cell

Experiment Layout Red shading Thermal gradient denotes trace tube heating zones Air/He bypass during heat up heaters d gamma Mass flow dete tors Mixer Bottled air controller Furnace Condensable Bottled helium for Mass flow fission product mixing with air and **bd** Test gas pre neater controller for inert heat up collection **T**-junction Bottled helium Mass flow 50 °C): Filter pack re (heated at for mixing with controller Glass woon re-filter steam **HEPA** filter Steam Generator Zeolite filter (optional) Gamma detector Deaerated Mass flow meter Water Supply Hot Cell Wal Steam bypass during heat up Mass-Spectrometer/CO analyzer Red shading denotes Instrument Dual stream sampler trace heaters Heated capillaries Exhaust Mass flow meter H₂O Trap **Fission** gas (e.g. drierite) Condenser (~1°C) monitoring system for Kr-85 and Xe-133: Charcoal traps -He sweep gas supply Gamma detectors Exhaust to FCF stack **FCF Operating Corridor FCF Air Cell**

Experiment Layout

11

Experiment Layout

Experiment Layout

Sample Process Flow

Simplified Overall Schedule

	2	201	6		2017						2018									2019									20	20							
	oct	Nov	Dec	Jan	Abr 1	Anr	Mav	lun	lul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	lun	Jul	Aug	Sep		Jan	Feb	Mar	Apr	Мау	Jun	In .	Aug	to S	Nov	Dec	Jan	Feb
Conceptual Design																																					
Benchtop testing*																									1												
60% design review for in-cell system**																																					
Final design																																					
FCF facility modifications																									1												
Equipment procurement and fabrication																																					
Phase 1 and Phase 2 qual in mockup																																					
Install equipment in FCF air cell																									1												
Feedthrough(s) installation																																					
Phase 3 qualifications									:																												
Approval for hot operations																																					
Initiate air/moisture ingress safety test																																					
📲 wilestone to initiate benchtop develor	om	ent	tes	ting	by	<u>3/</u> 3	1/1	.7																													_
**L2 milestone to complete 60% design re	vie	w b	oy 9	/15/	17																																

Elapsed Timeline

					• Ac	quired ben	ch							
testing furnace														
	 FOR-284 rev. 1 Selected FCF air hot-cell window A3 Chose lab for benchtop testing FOR-284 rev. 0 Initiated bi- weekly design Initiated bi- weekly design Initiated bi- weekly design 									ned ptual	 Initiated material request for gas analysis equipment Furnace moved into lab for benchtop testing 			
TCT Meeting		TEV	-2729	meeti	ngs				design	n report				
and Input		rev.	1						 Initiat 	ed SDD				
Nov	М	ay J	une	Ju	ly	Aug	S	ept	C	Oct	Nov			
2015	20	16 2	016	20	16	2016	20	016	20)16	20	16		

• Complete benchtop system

Elapsed Timeline (continued)

• Comple review develop laborate	eted fo of ben pment ory ins	cused chtop furnace truction (LI)	 Completed berdesign and P& Completed berders pressure safety Placed orders valves, mass f controllers, da custom thermos segmented tub 	nchtop system LID nchtop y document for all tubing, low ta acquisition pcouples, pe for TGT	MS/CO	 construction Benchtop testing of graphite with air/He and steam/helium mixtures, stable fission product surrogate testing Aug-Sept: in-cell system 60% design review 					
• In-cell furnace conceptual design review			concept		• Tested fur flanges	rnace					
• Completed conceptual design document merging F&ORs with necessary specifications		• Initiated beau testing with furnace tube	nchtop zirconia e	 Released Started be valve boa construction 	LI-805 enchtop rd on	 Installed an on MS/CO Began testi 	d trained analyzer ng LaBr ₃				
							·				
Jan 2017	Fel 201	b M 7 20	ar Aj 17 20	pr M 17 20	ay Ju 17 20	in Jul 17 201	Remainder7of FY17				

Current benchtop testing – tube materials/flanges

- Currently testing with Al₂O₃ and ZrO₂
- Ramp rates of 200°C/hr have been used successfully with ZrO₂
- Faster ramp rates may be tested

Current benchtop testing – gas analysis

 Mass spectrometer, CO analyzer, multi-stream selector to measure oxidation products from reaction of carbon with H₂O/air (CO, CO₂, H₂, etc.)

Current benchtop testing – furnace temperature profiling

- Profiling for test temperatures 800-1600°C in steam/air
- 6 thermocouples, Type-K for low temperature zones, Type-B for high temperature zones
- SiC sheath
- Profile entire furnace length: one probe inserted from left, one probe inserted from right

Current benchtop testing – thermal gradient tube design to enable post-test leaching

- Multiple tube sleeves inserted inside single piece tube
- Tube end-caps clamp entire assembly together
- Ordered these in ZrO₂ and Al₂O₃
- Test deposition of stable isotopes of: Ag, Cs, Eu, I, Sr

Completed P&ID for Benchtop Development. Generated Preliminary P&IDs for In-cell System

22

Preliminary In-Cell P&ID Showing Furnace and Furnace Outlet Gas Flow

In-cell System Status

- Secured use of FCF Window A3
- Conceptual design review completed February 2017 (fulfilled L4 milestone)
- 60% design review to be completed end of August 2017 (L2 milestone)
 - Piping and instrumentation diagrams (P&ID)
 - Out-of-cell equipment: gas supply, gas analysis, fission gas monitoring
 - In-cell equipment: gas supply lines, furnace, filters, TGT, etc.
 - Equipment lists/specs
 - Valve boards/equipment layouts in cell corridor and FCF basement
 - Facility electrical diagrams
 - Instrumentation and control: hardware/software
 - Feedthroughs: number, location, inputs/outputs, shell design
 - Mockup: equipment layout
 - Facility: DSA update, draft Criticality Safety Evaluation
- Taking steps to order manipulators this year

In-cell System: Furnace Loading (video)

In-cell System: Thermal Gradient Tube Gamma Detectors (video)

Shutter and detector distance control

LaBr₃(Ce) detectors

On-going Work

- In-cell system 60% design review by end of FY2017 (L2 milestone)
- Target for in-cell system final design is March 2018
- Long-lead-time equipment for in-cell system will be purchased at-risk as-appropriate
- Benchtop testing: oxidization of graphite, gas analysis, surrogate fission product transport, etc.
- Benchtop testing will continue beyond in-cell system final design
- Seeking bids from manufacturers for in-cell furnace

Questions and Discussion

John StempienIdaho National Laboratoryjohn.stempien@inl.gov(208) 526-8410

Possible Air-Ingress Accident Conditions Depressurized Loss of Forced-Convection (DLOFC)

- Safety-Related Design Condition-10 (SRDC-10)¹
 - Cooling is by conduction and radiation to the reactor cavity cooling system (RCCS)
 - Peak fuel temperature: 1620°C
 - Time to reach peak fuel temperature: 80 hours
 - Air-ingress occurs after depressurization

Possible Moisture-Ingress Accident Conditions

- Safety-Related Design Condition-6 (SRDC-6)¹
 - Depressurized conduction cooldown event
 - Moderate steam generator leak duration: < 30 minutes
 - Peak core temperature: 1540°C
 - Time to reach peak temperature: 100 hrs